Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Proteins ; 92(6): 693-704, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38179877

RESUMO

Human acyl protein thioesterases (APTs) catalyze the depalmitoylation of S-acylated proteins attached to the plasma membrane, facilitating reversible cycles of membrane anchoring and detachment. We previously showed that a bacterial APT homologue, FTT258 from the gram-negative pathogen Francisella tularensis, exists in equilibrium between a closed and open state based on the structural dynamics of a flexible loop overlapping its active site. Although the structural dynamics of this loop are not conserved in human APTs, the amino acid sequence of this loop is highly conserved, indicating essential but divergent functions for this loop in human APTs. Herein, we investigated the role of this loop in regulating the catalytic activity, ligand binding, and protein folding of human APT1, a depalmitoylase connected with cancer, immune, and neurological signaling. Using a combination of substitutional analysis with kinetic, structural, and biophysical characterization, we show that even in its divergent structural location in human APT1 that this loop still regulates the catalytic activity of APT1 through contributions to ligand binding and substrate positioning. We confirmed previously known roles for multiple residues (Phe72 and Ile74) in substrate binding and catalysis while adding new roles in substrate selectivity (Pro69), in catalytic stabilization (Asp73 and Ile75), and in transitioning between the membrane binding ß-tongue and substrate-binding loops (Trp71). Even conservative substitution of this tryptophan (Trp71) fulcrum led to complete loss of catalytic activity, a 13°C decrease in total protein stability, and drastic drops in ligand affinity, indicating that the combination of the size, shape, and aromaticity of Trp71 are essential to the proper structure of APT1. Mixing buried hydrophobic surface area with contributions to an exposed secondary surface pocket, Trp71 represents a previously unidentified class of essential tryptophans within α/ß hydrolase structure and a potential allosteric binding site within human APTs.


Assuntos
Domínio Catalítico , Ligação Proteica , Dobramento de Proteína , Tioléster Hidrolases , Humanos , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genética , Ligantes , Modelos Moleculares , Sequência de Aminoácidos , Cinética , Sequência Conservada , Estabilidade Enzimática , Francisella tularensis/enzimologia , Francisella tularensis/metabolismo , Francisella tularensis/química , Cristalografia por Raios X , Especificidade por Substrato
2.
Sci Rep ; 11(1): 7667, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828158

RESUMO

SapM is a secreted virulence factor from Mycobacterium tuberculosis critical for pathogen survival and persistence inside the host. Its full potential as a target for tuberculosis treatment has not yet been exploited because of the lack of potent inhibitors available. By screening over 1500 small molecules, we have identified new potent and selective inhibitors of SapM with an uncompetitive mechanism of inhibition. The best inhibitors share a trihydroxy-benzene moiety essential for activity. Importantly, the inhibitors significantly reduce mycobacterial burden in infected human macrophages at 1 µM, and they are selective with respect to other mycobacterial and human phosphatases. The best inhibitor also reduces intracellular burden of Francisella tularensis, which secretes the virulence factor AcpA, a homologue of SapM, with the same mechanism of catalysis and inhibition. Our findings demonstrate that inhibition of SapM with small molecule inhibitors is efficient in reducing intracellular mycobacterial survival in host macrophages and confirm SapM as a potential therapeutic target. These initial compounds have favourable physico-chemical properties and provide a basis for exploration towards the development of new tuberculosis treatments. The efficacy of a SapM inhibitor in reducing Francisella tularensis intracellular burden suggests the potential for developing broad-spectrum antivirulence agents to treat microbial infections.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Fatores de Virulência/antagonistas & inibidores , Fosfatase Alcalina/antagonistas & inibidores , Francisella tularensis/enzimologia , Humanos , Terapia de Alvo Molecular , Mycobacterium tuberculosis/patogenicidade , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico
3.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 11): 524-535, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135671

RESUMO

The crystal structure of the class II fructose-1,6-bisphosphatase (FBPaseII) from the important pathogen Francisella tularensis is presented at 2.4 Šresolution. Its structural and functional relationships to the closely related phosphatases from Mycobacterium tuberculosis (MtFBPaseII) and Escherichia coli (EcFBPaseII) and to the dual phosphatase from Synechocystis strain 6803 are discussed. FBPaseII from F. tularensis (FtFBPaseII) was crystallized in a monoclinic crystal form (space group P21, unit-cell parameters a = 76.30, b = 100.17, c = 92.02 Å, ß = 90.003°) with four chains in the asymmetric unit. Chain A had two coordinated Mg2+ ions in its active center, which is distinct from previous findings, and is presumably deactivated by their presence. The structure revealed an approximate 222 (D2) symmetry homotetramer analogous to that previously described for MtFBPaseII, which is formed by a crystallographic dyad and which differs from the exact tetramer found in EcFBPaseII at a 222 symmetry site in the crystal. Instead, the approximate homotetramer is very similar to that found in the dual phosphatase from Synechocystis, even though no allosteric effector was found in FtFBPase. The amino-acid sequence and folding of the active site of FtFBPaseII result in structural characteristics that are more similar to those of the previously published EcFBPaseII than to those of MtFBPaseII. The kinetic parameters of native FtFBPaseII were found to be in agreement with published studies. Kinetic analyses of the Thr89Ser and Thr89Ala mutations in the active site of the enzyme are consistent with the previously proposed mechanism for other class II bisphosphatases. The Thr89Ala variant enzyme was inactive but the Thr89Ser variant was partially active, with an approximately fourfold lower Km and Vmax than the native enzyme. The structural and functional insights derived from the structure of FtFBPaseII will provide valuable information for the design of specific inhibitors.


Assuntos
Francisella tularensis/enzimologia , Frutose-Bifosfatase/química , Frutose-Bifosfatase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/enzimologia , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/isolamento & purificação , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Conformação Proteica , Estrutura Quaternária de Proteína , Synechocystis/enzimologia
4.
Microb Pathog ; 137: 103742, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31513897

RESUMO

Low molecular mass penicillin binding proteins (LMM PBP) are bacterial enzymes involved in the final steps of peptidoglycan biosynthesis. In Escherichia coli, most LMM PBP exhibit dd-carboxypeptidase activity, are not essential for growth in routine laboratory media, and contributions to virulent phenotypes remain largely unknown. The Francisella tularensis Schu S4 genome harbors the dacD gene (FTT_1029), which encodes a LMM PBP with homology to PBP6b of E. coli. Disruption of this locus in the fully virulent Schu S4 strain resulted in a mutant that could not grow in Chamberlain's Defined Medium and exhibited severe morphological defects. Further characterization studies demonstrated that the growth defects of the dacD mutant were pH-dependent, and could be partially restored by growth at neutral pH or fully restored by genetic complementation. Infection of murine macrophage-like cells showed that the Schu S4 dacD mutant is capable of intracellular replication. However, this mutant was attenuated in BALB/c mice following intranasal challenge (LD50 = 603 CFU) as compared to mice challenged with the parent (LD50 = 1 CFU) or complemented strain (LD50 = 1 CFU). Additionally, mice that survived infection with the dacD mutant showed significant protection against subsequent challenge with the parent strain. Collectively, these results indicate that the DacD protein of F. tularensis is essential for growth in low pH environments and virulence in vivo. These results also suggest that a PBP mutant could serve as the basis of a novel, live attenuated vaccine strain.


Assuntos
Francisella tularensis/enzimologia , Francisella tularensis/patogenicidade , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Tularemia/imunologia , Animais , Proteínas de Bactérias/genética , Vacinas Bacterianas/imunologia , Linhagem Celular , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Francisella tularensis/genética , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Proteínas de Ligação às Penicilinas , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Tularemia/microbiologia , Vacinas Atenuadas/imunologia , Virulência , Fatores de Virulência/genética
5.
Virulence ; 10(1): 643-656, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31314675

RESUMO

Pathogens enhance their survival during infections by manipulating host defenses. Francisella tularensis evades innate immune responses, which we have found to be dependent on an understudied gene ybeX (FTL_0883/FTT_0615c). To understand the function of YbeX, we sought protein interactors in F. tularensis subsp. holarctica live vaccine strain (LVS). An unstudied Francisella protein co-immunoprecipitated with recombinant YbeX, which is a predicted glycosyltransferase with a DXD-motif. There are up to four genomic copies of this gene with identical sequence in strains of F. tularensis pathogenic to humans, despite ongoing genome decay. Disruption mutations were generated by intron insertion into all three copies of this glycosyltransferase domain containing gene in LVS, gdcA1-3. The resulting strains stimulated more cytokines from macrophages in vitro than wild-type LVS and were attenuated in two in vivo infection models. GdcA was released from LVS during culture and was sufficient to block NF-κB activation when expressed in eukaryotic cells. When co-expressed in zebrafish, GdcA and YbeX were synergistically lethal to embryo development. Glycosyltransferases with DXD-motifs are found in a variety of pathogens including NleB, an Escherichia coli type-III secretion system effector that inhibits NF-κB by antagonizing death receptor signaling. To our knowledge, GdcA is the first DXD-motif glycosyltransferase that inhibits NF-κB in immune cells. Together, these findings suggest DXD-motif glycosyltransferases may be a conserved virulence mechanism used by pathogenic bacteria to remodel host defenses.


Assuntos
Proteínas de Bactérias/imunologia , Francisella tularensis/enzimologia , Glicosiltransferases/imunologia , Interações Hospedeiro-Patógeno , Animais , Proteínas de Bactérias/genética , Citocinas , Feminino , Francisella tularensis/genética , Glicosiltransferases/genética , Humanos , Imunidade Inata , Células Jurkat , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Mariposas , Mutação , Tularemia/imunologia , Tularemia/microbiologia , Virulência , Peixe-Zebra
6.
ACS Chem Biol ; 14(8): 1760-1766, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31260252

RESUMO

The Gram-negative bacterium Francisella tularensis secretes the siderophore rhizoferrin to scavenge necessary iron from the environment. Rhizoferrin, also produced by a variety of fungi and bacteria, comprises two citrate molecules linked by amide bonds to a central putrescine (diaminobutane) moiety. Genetic analysis has determined that rhizoferrin production in F. tularensis requires two enzymes: FslA, a siderophore synthetase of the nonribosomal peptide synthetase-independent siderophore synthetase (NIS) family, and FslC, a pyridoxal-phosphate-dependent decarboxylase. To discern the steps in the biosynthetic pathway, we tested F. tularensis strain LVS and its ΔfslA and ΔfslC mutants for the ability to incorporate potential precursors into rhizoferrin. Unlike putrescine supplementation, supplementation with ornithine greatly enhanced siderophore production by LVS. Radioactivity from L-[U-14C] ornithine, but not from L-[1-14C] ornithine, was efficiently incorporated into rhizoferrin by LVS. Although neither the ΔfslA nor the ΔfslC mutant produced rhizoferrin, a putative siderophore intermediate labeled by both [U-14C] ornithine and [1-14C] ornithine was secreted by the ΔfslC mutant. Rhizoferrin was identified by liquid chromatography and mass spectrometry in LVS culture supernatants, while citryl-ornithine was detected as the siderophore intermediate in the culture supernatant of the ΔfslC mutant. Our findings support a three-step pathway for rhizoferrin production in Francisella; unlike the fungus Rhizopus delemar, where putrescine functions as a primary precursor for rhizoferrin, biosynthesis in Francisella preferentially starts with ornithine as the substrate for FslA-mediated condensation with citrate. Decarboxylation of this citryl ornithine intermediate by FslC is necessary for a second condensation reaction with citrate to produce rhizoferrin.


Assuntos
Citratos/metabolismo , Compostos Férricos/metabolismo , Francisella tularensis/metabolismo , Ornitina/análogos & derivados , Ornitina/metabolismo , Sideróforos/biossíntese , Proteínas de Bactérias/metabolismo , Radioisótopos de Carbono , Carbono-Nitrogênio Ligases/metabolismo , Carboxiliases/metabolismo , Francisella tularensis/enzimologia
7.
J Enzyme Inhib Med Chem ; 34(1): 1178-1185, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31282230

RESUMO

The activation of the ß-class carbonic anhydrases (CAs, EC 4.2.1.1) from the bacteria Brucella suis and Francisella tularensis with amine and amino acids was investigated. BsuCA 1 was sensitive to activation with amino acids and amines, whereas FtuCA was not. The most effective BsuCA 1 activators were L-adrenaline and D-Tyr (KAs of 0.70-0.95 µM). L-His, L-/D-Phe, L-/D-DOPA, L-Trp, L-Tyr, 4-amino-L-Phe, dopamine, 2-pyridyl-methylamine, D-Glu and L-Gln showed activation constants in the range of 0.70-3.21 µM. FtuCA was sensitive to activation with L-Glu (KA of 9.13 µM). Most of the investigated compounds showed a weak activating effect against FtuCA (KAs of 30.5-78.3 µM). Many of the investigated amino acid and amines are present in high concentrations in many tissues in vertebrates, and their role in the pathogenicity of the two bacteria is poorly understood. Our study may bring insights in processes connected with invasion and pathogenic effects of intracellular bacteria.


Assuntos
Aminas/farmacologia , Aminoácidos/farmacologia , Brucella suis/enzimologia , Anidrases Carbônicas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Francisella tularensis/enzimologia , Aminas/química , Aminoácidos/química , Anidrases Carbônicas/genética , Relação Estrutura-Atividade
8.
Sci Rep ; 9(1): 7952, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138855

RESUMO

Regulation of gene expression through processing and turnover of RNA is a key mechanism that allows bacteria to rapidly adapt to changing environmental conditions. Consequently, RNA degrading enzymes (ribonucleases; RNases) such as the endoribonuclease RNase E, frequently play critical roles in pathogenic bacterial virulence and are potential antibacterial targets. RNase E consists of a highly conserved catalytic domain and a variable non-catalytic domain that functions as the structural scaffold for the multienzyme degradosome complex. Despite conservation of the catalytic domain, a recent study identified differences in the response of RNase E homologues from different species to the same inhibitory compound(s). While RNase E from Escherichia coli has been well-characterised, far less is known about RNase E homologues from other bacterial species. In this study, we structurally and biochemically characterise the RNase E catalytic domains from four pathogenic bacteria: Yersinia pestis, Francisella tularensis, Burkholderia pseudomallei and Acinetobacter baumannii, with a view to exploiting RNase E as an antibacterial target. Bioinformatics, small-angle x-ray scattering and biochemical RNA cleavage assays reveal globally similar structural and catalytic properties. Surprisingly, subtle species-specific differences in both structure and substrate specificity were also identified that may be important for the development of effective antibacterial drugs targeting RNase E.


Assuntos
Acinetobacter baumannii/enzimologia , Proteínas de Bactérias/química , Burkholderia pseudomallei/enzimologia , Endorribonucleases/química , Francisella tularensis/enzimologia , Yersinia pestis/enzimologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidade , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Domínio Catalítico , Clonagem Molecular , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA/química , RNA/genética , RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato , Virulência , Yersinia pestis/genética , Yersinia pestis/patogenicidade
9.
PLoS One ; 14(3): e0213699, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30870480

RESUMO

Francisella tularensis is a Gram-negative, facultative intracellular pathogen and the causative agent of a lethal human disease known as tularemia. Due to its extremely high virulence and potential to be used as a bioterror agent, F. tularensis is classified by the CDC as a Category A Select Agent. As an intracellular pathogen, F. tularensis during its intracellular residence encounters a number of oxidative and nitrosative stresses. The roles of the primary antioxidant enzymes SodB, SodC and KatG in oxidative stress resistance and virulence of F. tularensis live vaccine strain (LVS) have been characterized in previous studies. However, very fragmentary information is available regarding the role of peroxiredoxin of the AhpC/TSA family (annotated as AhpC) of F. tularensis SchuS4; whereas the role of AhpC of F. tularensis LVS in tularemia pathogenesis is not known. This study was undertaken to exhaustively investigate the role of AhpC in oxidative stress resistance of F. tularensis LVS and SchuS4. We report that AhpC of F. tularensis LVS confers resistance against a wide range of reactive oxygen and nitrogen species, and serves as a virulence factor. In highly virulent F. tularensis SchuS4 strain, AhpC serves as a key antioxidant enzyme and contributes to its robust oxidative and nitrosative stress resistance, and intramacrophage survival. We also demonstrate that there is functional redundancy among primary antioxidant enzymes AhpC, SodC, and KatG of F. tularensis SchuS4. Collectively, this study highlights the differences in antioxidant defense mechanisms of F. tularensis LVS and SchuS4.


Assuntos
Antioxidantes/fisiologia , Francisella tularensis/enzimologia , Estresse Oxidativo , Peroxirredoxinas/fisiologia , Tularemia/microbiologia , Animais , Proteínas de Bactérias/fisiologia , Vacinas Bacterianas/imunologia , Francisella tularensis/patogenicidade , Teste de Complementação Genética , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Superóxido Dismutase/fisiologia , Tularemia/imunologia , Vacinas Atenuadas/imunologia , Virulência
10.
Mol Divers ; 23(2): 263-273, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30120657

RESUMO

Nowadays, antibiotic resistance has turned into one of the most important worldwide health problems. Biological end point of critical enzymes induced by potent inhibitors is recently being considered as a highly effective and popular strategy to defeat antibiotic-resistant pathogens. For instance, the simple but critical ß-carbonic anhydrase has recently been in the center of attention for anti-pathogen drug discoveries. However, no ß-carbonic anhydrase selective inhibitor has yet been developed. Available ß-carbonic anhydrase inhibitors are also highly potent with regard to human carbonic anhydrases, leading to severe inevitable side effects in case of usage. Therefore, developing novel inhibitors with high selectivity against pathogenic ß-carbonic anhydrases is of great essence. Herein, for the first time, we have conducted a proteochemometric study to explore the structural and the chemical aspects of the interactions governed by bacterial ß-carbonic anhydrases and their inhibitors. We have found valuable information which can lead to designing novel inhibitors with better selectivity for bacterial ß-carbonic anhydrases.


Assuntos
Burkholderia pseudomallei/enzimologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas , Francisella tularensis/enzimologia , Isoenzimas , Modelos Moleculares
11.
Proc Natl Acad Sci U S A ; 115(42): 10654-10659, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30257945

RESUMO

Axon degeneration, a hallmark of chemotherapy-induced peripheral neuropathy (CIPN), is thought to be caused by a loss of the essential metabolite nicotinamide adenine dinucleotide (NAD+) via the prodegenerative protein SARM1. Some studies challenge this notion, however, and suggest that an aberrant increase in a direct precursor of NAD+, nicotinamide mononucleotide (NMN), rather than loss of NAD+, is responsible. In support of this idea, blocking NMN accumulation in neurons by expressing a bacterial NMN deamidase protected axons from degeneration. We hypothesized that protection could similarly be achieved by reducing NMN production pharmacologically. To achieve this, we took advantage of an alternative pathway for NAD+ generation that goes through the intermediate nicotinic acid mononucleotide (NAMN), rather than NMN. We discovered that nicotinic acid riboside (NAR), a precursor of NAMN, administered in combination with FK866, an inhibitor of the enzyme nicotinamide phosphoribosyltransferase that produces NMN, protected dorsal root ganglion (DRG) axons against vincristine-induced degeneration as well as NMN deamidase. Introducing a different bacterial enzyme that converts NAMN to NMN reversed this protection. Collectively, our data indicate that maintaining NAD+ is not sufficient to protect DRG neurons from vincristine-induced axon degeneration, and elevating NMN, by itself, is not sufficient to cause degeneration. Nonetheless, the combination of FK866 and NAR, which bypasses NMN formation, may provide a therapeutic strategy for neuroprotection.


Assuntos
Acrilamidas/farmacologia , NAD/metabolismo , Degeneração Neural/prevenção & controle , Neurônios/efeitos dos fármacos , Niacinamida/análogos & derivados , Mononucleotídeo de Nicotinamida/análogos & derivados , Piperidinas/farmacologia , Vincristina/toxicidade , Animais , Antineoplásicos Fitogênicos/toxicidade , Combinação de Medicamentos , Francisella tularensis/enzimologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Niacinamida/farmacologia , Mononucleotídeo de Nicotinamida/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Compostos de Piridínio
12.
Emerg Microbes Infect ; 7(1): 149, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120231

RESUMO

The Lon protease selectively degrades abnormal proteins or certain normal proteins in response to environmental and cellular conditions in many prokaryotic and eukaryotic organisms. However, the mechanism(s) behind the substrate selection of normal proteins remains largely unknown. In this study, we identified 10 new substrates of F. tularensis Lon from a total of 21 candidate substrates identified in our previous work, the largest number of novel Lon substrates from a single study. Cross-species degradation of these and other known Lon substrates revealed that human Lon is unable to degrade many bacterial Lon substrates, suggestive of a "organism-adapted" substrate selection mechanism for the natural Lon variants. However, individually replacing the N, A, and P domains of human Lon with the counterparts of bacterial Lon did not enable the human protease to degrade the same bacterial Lon substrates. This result showed that the "organism-adapted" substrate selection depends on multiple domains of the Lon proteases. Further in vitro proteolysis and mass spectrometry analysis revealed a similar substrate cleavage pattern between the bacterial and human Lon variants, which was exemplified by predominant representation of leucine, alanine, and other hydrophobic amino acids at the P(-1) site within the substrates. These observations suggest that the Lon proteases select their substrates at least in part by fine structural matching with the proteins in the same organisms.


Assuntos
Proteases Dependentes de ATP/química , Proteínas de Bactérias/química , Francisella tularensis/enzimologia , Proteínas Mitocondriais/química , Protease La/química , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Francisella tularensis/química , Francisella tularensis/genética , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Protease La/genética , Protease La/metabolismo , Domínios Proteicos , Alinhamento de Sequência , Especificidade por Substrato
13.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29980561

RESUMO

Streptomyces has a strong capability for producing a large number of bioactive natural products and remains invaluable as a source for the discovery of novel drug leads. Although the Streptococcus pyogenes CRISPR-Cas9-assisted genome editing tool has been developed for rapid genetic engineering in Streptomyces, it has a number of limitations, including the toxicity of SpCas9 expression in some important industrial Streptomyces strains and the need for complex expression constructs when targeting multiple genomic loci. To address these problems, in this study, we developed a high-efficiency CRISPR-Cpf1 system (from Francisella novicida) for multiplex genome editing and transcriptional repression in Streptomyces Using an all-in-one editing plasmid with homology-directed repair (HDR), our CRISPR-Cpf1 system precisely deletes single or double genes at efficiencies of 75 to 95% in Streptomyces coelicolor When no templates for HDR are present, random-sized DNA deletions are achieved by FnCpf1-induced double-strand break (DSB) repair by a reconstituted nonhomologous end joining (NHEJ) pathway. Furthermore, a DNase-deactivated Cpf1 (ddCpf1)-based integrative CRISPRi system is developed for robust, multiplex gene repression using a single customized crRNA array. Finally, we demonstrate that FnCpf1 and SpCas9 exhibit different suitability in tested industrial Streptomyces species and show that FnCpf1 can efficiently promote HDR-mediated gene deletion in the 5-oxomilbemycin-producing strain Streptomyces hygroscopicus SIPI-KF, in which SpCas9 does not work well. Collectively, FnCpf1 is a powerful and indispensable addition to the Streptomyces CRISPR toolbox.IMPORTANCE Rapid, efficient genetic engineering of Streptomyces strains is critical for genome mining of novel natural products (NPs) as well as strain improvement. Here, a novel and high-efficiency Streptomyces genome editing tool is established based on the FnCRISPR-Cpf1 system, which is an attractive and powerful alternative to the S. pyogenes CRISPR-Cas9 system due to its unique features. When combined with HDR or NHEJ, FnCpf1 enables the creation of gene(s) deletion with high efficiency. Furthermore, a ddCpf1-based integrative CRISPRi platform is established for simple, multiplex transcriptional repression. Of importance, FnCpf1-based genome editing proves to be a highly efficient tool for genetic modification of some important industrial Streptomyces strains (e.g., S. hygroscopicus SIPI-KF) that cannot utilize the SpCRISPR-Cas9 system. We expect the CRISPR-Cpf1-assisted genome editing tool to accelerate discovery and development of pharmaceutically active NPs in Streptomyces as well as other actinomycetes.


Assuntos
Proteínas de Bactérias/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/metabolismo , Edição de Genes/métodos , Genoma Bacteriano , Streptomyces/genética , Reparo do DNA por Junção de Extremidades , Francisella tularensis/enzimologia , Engenharia Genética , Streptomyces coelicolor/genética , Transcrição Gênica
14.
Bioorg Med Chem Lett ; 28(11): 2074-2079, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29730028

RESUMO

We have previously reported benzimidazole-based compounds to be potent inhibitors of FabI for Francisella tularensis (FtFabI), making them promising antimicrobial hits. Optically active enantiomers exhibit markedly differing affinities toward FtFabI. The IC50 of benzimidazole (-)-1 is ∼100× lower than the (+)-enantiomer, with similar results for the 2 enantiomers. Determining the absolute configuration for these optical compounds and elucidating their binding modes is important for further design. Electronic circular dichroism (ECD) quantum calculations have become important in determining absolute configurations of optical compounds. We determined the absolute configuration of (-)/(+)-1 and (-)/(+)-2 by comparing experimental spectra and theoretical density functional theory (DFT) simulations of ECD spectra at the B3LYP/6-311+G(2d, p) level using Gaussian09. Comparison of experimental and calculated ECD spectra indicates that the S configuration corresponds to the (-)-rotation for both compounds 1 and 2, while the R configuration corresponds to the (+)-rotation. Further, molecular dynamics simulations and MM-GBSA binding energy calculations for these two pairs of enantiomers with FtFabI show much tighter binding MM-GBSA free energies for S-1 and S-2 than for their enantiomers, R-1 and R-2, consistent with the S configuration being the more active one, and with the ECD determination of the S configuration corresponding to (-) and the R configuration corresponding to (+). Thus, our computational studies allow us to assign (-) to (S)- and (+) to (R)- for compounds 1 and 2, and to further evaluate structural changes to improve efficacy.


Assuntos
Antibacterianos/farmacologia , Benzimidazóis/farmacologia , Enoil-CoA Hidratase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Francisella tularensis/efeitos dos fármacos , Teoria Quântica , Antibacterianos/química , Benzimidazóis/química , Sítios de Ligação/efeitos dos fármacos , Dicroísmo Circular , Relação Dose-Resposta a Droga , Enoil-CoA Hidratase/metabolismo , Inibidores Enzimáticos/química , Francisella tularensis/enzimologia , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade
15.
FEBS J ; 285(12): 2306-2318, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29694705

RESUMO

Francisella tularensisis, the causative agent of tularemia has been classified as a category A bioterrorism agent. Here, we present the crystal structure of apo and adenine bound form of the adenine phosphoribosyltransferase (APRT) from Francisella tularensis. APRT is an enzyme involved in the salvage of adenine (a 6-aminopurine), converting it to AMP. The purine salvage pathway relies on two essential and distinct enzymes to convert 6-aminopurine and 6-oxopurines into corresponding nucleotides. The mechanism by which these enzymes differentiate different purines is not clearly understood. Analysis of the structures of apo and adenine-bound APRT from F. tularensis, together with all other available structures of APRTs, suggests that (a) the base-binding loop is stabilized by a cluster of aromatic and conformation-restricting proline residues, and (b) an N-H···N hydrogen bond between the base-binding loop and the N1 atom of adenine is the key interaction that differentiates adenine from 6-oxopurines. These observations were corroborated by bioinformatics analysis of ~ 4000 sequences of APRTs (with 80% identity cutoff), which confirmed that the residues conferring rigidity to the base-binding loop are highly conserved. Furthermore, an F23A mutation on the base-binding loop severely affects the efficiency of the enzyme. We extended our analysis to the structure and sequences of APRTs from the Trypanosomatidae family with a destabilizing insertion on the base-binding loop and propose the mechanism by which these evolutionarily divergent enzymes achieve base specificity. Our results suggest that the base-binding loop not only confers appropriate affinity but also provides defined specificity for adenine. ENZYME: EC 2.4.2.7 DATABASE: Structural data are available in Protein Data Bank (PDB) under the accession numbers 5YW2 and 5YW5.


Assuntos
Adenina Fosforribosiltransferase/química , Adenina/química , Monofosfato de Adenosina/química , Apoproteínas/química , Proteínas de Bactérias/química , Francisella tularensis/enzimologia , Adenina/metabolismo , Adenina Fosforribosiltransferase/genética , Adenina Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Francisella tularensis/química , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ligação de Hidrogênio , Cinética , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica
16.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 1): 14-22, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29372903

RESUMO

Aspartate ß-semialdehyde dehydrogenase (ASADH) is an enzyme involved in the diaminopimelate pathway of lysine biosynthesis. It is essential for the viability of many pathogenic bacteria and therefore has been the subject of considerable research for the generation of novel antibiotic compounds. This manuscript describes the first structure of ASADH from Francisella tularensis, the causative agent of tularemia and a potential bioterrorism agent. The structure was determined at 2.45 Šresolution and has a similar biological assembly to other bacterial homologs. ASADH is known to be dimeric in bacteria and have extensive interchain contacts, which are thought to create a half-sites reactivity enzyme. ASADH from higher organisms shows a tetrameric oligomerization, which also has implications for both reactivity and regulation. This work analyzes the apo form of F. tularensis ASADH, as well as the binding of the enzyme to its cofactor NADP+.


Assuntos
Aspartato-Semialdeído Desidrogenase/química , Proteínas de Bactérias/química , Francisella tularensis/enzimologia , Sequência de Aminoácidos , Aspartato-Semialdeído Desidrogenase/genética , Aspartato-Semialdeído Desidrogenase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Francisella tularensis/genética , Modelos Moleculares , NADP/metabolismo , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
17.
J Bacteriol ; 200(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29158241

RESUMO

The alarmone ppGpp is a critical regulator of virulence gene expression in Francisella tularensis In this intracellular pathogen, ppGpp is thought to work in concert with the putative DNA-binding protein PigR and the SspA protein family members MglA and SspA to control a common set of genes. MglA and SspA form a complex that interacts with RNA polymerase (RNAP), and PigR functions by interacting with the RNAP-associated MglA-SspA complex. Prior work suggested that ppGpp indirectly exerts its regulatory effects in F. tularensis by promoting the accumulation of polyphosphate in the cell, which in turn was required for formation of the MglA-SspA complex. Here we show that in Escherichia coli, neither polyphosphate nor ppGpp is required for formation of the MglA-SspA complex but that ppGpp promotes the interaction between PigR and the MglA-SspA complex. Moreover, we show that polyphosphate kinase, the enzyme responsible for the synthesis of polyphosphate, antagonizes virulence gene expression in F. tularensis, a finding that is inconsistent with the notion that polyphosphate accumulation promotes virulence gene expression in this organism. Our findings identify polyphosphate kinase as a novel negative regulator of virulence gene expression in F. tularensis and support a model in which ppGpp exerts its positive regulatory effects by promoting the interaction between PigR and the MglA-SspA complex.IMPORTANCE In Francisella tularensis, MglA and SspA form a complex that associates with RNA polymerase to positively control the expression of key virulence genes. The MglA-SspA complex works together with the putative DNA-binding protein PigR and the alarmone ppGpp. PigR functions by interacting directly with the MglA-SspA complex, but how ppGpp exerts its effects was unclear. Prior work indicated that ppGpp acts by promoting the accumulation of polyphosphate, which is required for MglA and SspA to interact. Here we show that formation of the MglA-SspA complex does not require polyphosphate. Furthermore, we find that polyphosphate antagonizes the expression of virulence genes in F. tularensis Thus, ppGpp does not promote virulence gene expression in this organism through an effect on polyphosphate.


Assuntos
Francisella tularensis/genética , Francisella tularensis/patogenicidade , Regulação Bacteriana da Expressão Gênica , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Francisella tularensis/enzimologia , Ilhas Genômicas , Macrófagos/microbiologia , Camundongos , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Polifosfatos/metabolismo , Ligação Proteica , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Virulência/genética
18.
Nat Commun ; 8(1): 853, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021545

RESUMO

The enzyme fructose-bisphosphate aldolase occupies a central position in glycolysis and gluconeogenesis pathways. Beyond its housekeeping role in metabolism, fructose-bisphosphate aldolase has been involved in additional functions and is considered as a potential target for drug development against pathogenic bacteria. Here, we address the role of fructose-bisphosphate aldolase in the bacterial pathogen Francisella novicida. We demonstrate that fructose-bisphosphate aldolase is important for bacterial multiplication in macrophages in the presence of gluconeogenic substrates. In addition, we unravel a direct role of this metabolic enzyme in transcription regulation of genes katG and rpoA, encoding catalase and an RNA polymerase subunit, respectively. We propose a model in which fructose-bisphosphate aldolase participates in the control of host redox homeostasis and the inflammatory immune response.The enzyme fructose-bisphosphate aldolase (FBA) plays central roles in glycolysis and gluconeogenesis. Here, Ziveri et al. show that FBA of the pathogen Francisella novicida acts, in addition, as a transcriptional regulator and is important for bacterial multiplication in macrophages.


Assuntos
Francisella tularensis/enzimologia , Frutose-Bifosfato Aldolase/metabolismo , Regulação Bacteriana da Expressão Gênica , Animais , Feminino , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Frutose-Bifosfato Aldolase/genética , Gluconeogênese , Glucose/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Metabolômica , Camundongos Endogâmicos BALB C , Estresse Oxidativo
19.
Bioorg Med Chem ; 25(17): 4800-4804, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754318

RESUMO

A ß-class carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium Francisella tularensis (FtußCA) was cloned and purified, and the anion inhibition profile was investigated. Based on the measured kinetic parameters for the enzyme catalyzed CO2 hydration reaction (kcat of 9.8×105s-1 and a kcat/KM of 8.9×107M-1s-1), FtußCA is a highly effective enzyme. The activity of FtußCA was not inhibited by a range of anions that do not typically coordinate Zn(II) effectively, including perchlorate, tetrafluoroborate, and hexafluorophosphate. Surprisingly, some anions which generally complex well with many cations, including Zn(II), also did not effectively inhibit FtußCA, e.g., fluoride, cyanide, azide, nitrite, bisulphite, sulfate, tellurate, perrhenate, perrhuthenate, and peroxydisulfate. However, the most effective inhibitors were in the range of 90-94µM (sulfamide, sulfamic acid, phenylarsonic and phenylboronic acid). N,N-Diethyldithiocarbamate (KI of 0.31mM) was a moderately potent inhibitor. As Francisella tularensis is the causative agent of tularemia, the discovery of compounds that can interfere with the life cycle of this pathogen may result in novel opportunities to fight antibiotic drug resistance.


Assuntos
Ânions/química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Francisella tularensis/enzimologia , Sequência de Aminoácidos , Ácidos Borônicos/química , Ácidos Borônicos/metabolismo , Inibidores da Anidrase Carbônica/metabolismo , Inibidores da Anidrase Carbônica/uso terapêutico , Anidrases Carbônicas/metabolismo , Humanos , Dados de Sequência Molecular , Percloratos/química , Percloratos/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Ácidos Sulfônicos/química , Ácidos Sulfônicos/metabolismo , Tularemia/tratamento farmacológico , Tularemia/patologia , Zinco/química
20.
Emerg Microbes Infect ; 6(7): e66, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28745311

RESUMO

Francisella tularensis is a highly infectious intracellular pathogen that infects a wide range of host species and causes fatal pneumonic tularemia in humans. ftlA was identified as a potential virulence determinant of the F. tularensis live vaccine strain (LVS) in our previous transposon screen, but its function remained undefined. Here, we show that an unmarked deletion mutant of ftlA was avirulent in a pneumonia mouse model with a severely impaired capacity to infect host cells. Consistent with its sequence homology with GDSL lipase/esterase family proteins, the FtlA protein displayed lipolytic activity in both E. coli and F. tularensis with a preference for relatively short carbon-chain substrates. FtlA thus represents the first F. tularensis lipase to promote bacterial infection of host cells and in vivo fitness. As a cytoplasmic protein, we found that FtlA was secreted into the extracellular environment as a component of outer membrane vesicles (OMVs). Further confocal microscopy analysis revealed that the FtlA-containing OMVs isolated from F. tularensis LVS attached to the host cell membrane. Finally, the OMV-associated FtlA protein complemented the genetic deficiency of the ΔftlA mutant in terms of host cell infection when OMVs purified from the parent strain were co-incubated with the mutant bacteria. These lines of evidence strongly suggest that the FtlA lipase promotes F. tularensis adhesion and internalization by modifying bacterial and/or host molecule(s) when it is secreted as a component of OMVs.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Francisella tularensis/enzimologia , Francisella tularensis/patogenicidade , Lipase/metabolismo , Macrófagos/microbiologia , Células A549 , Animais , Aderência Bacteriana , Carga Bacteriana , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Escherichia coli/metabolismo , Francisella tularensis/genética , Francisella tularensis/fisiologia , Deleção de Genes , Humanos , Fígado/microbiologia , Pulmão/citologia , Camundongos , Mutação , Células RAW 264.7 , Baço/microbiologia , Tularemia/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA